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Contextual bandits: Covariates, Action, Reward

Goal: We consider the problem of learning policies that are robust with respect to

shifts in the environments.

Setting: (O✏ine) Contextual Bandits

X: context (observed); A: action;

R: reward; U: context (unobserved)
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Figure 1: Graphical model of the setting

We assume additionally that data is collected from di↵erent environments, e ! E ,

changing the covariate distributions. Future changes in distribution is represented as

new environments.

¥ E.g. records from di↵erent hospitals, countries or experimental setups.
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Example: Association flips between environments

S(! , e) :

!
"""""""""""#

"""""""""""$

U := "U

X 1 := #eU + "X 1

X 2 := $e + "X 2

A := g! (X 1, X 2, "A)

R :=

!
#

$
%1X 2 + U + "R, if A = 0

%2X 2 " U + "R, if A = 1

!

!

X 2
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In some environments, X 1 is positively correlated with R under A = 0, and in others it

is negatively correlated.

=# We say that X 1 is non-invariant. This poses a threat to generalization.

We do not assume that the graph is known! Instead, we seek for non-invariant features

and exclude those from policy learning.
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Invariance

A set of covariates X S is invariant if it holds that

e $$ GS R | X S.

A policy ! is invariant w.r.t. a set S if ! depends only on X S.
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e $$ G{ 2} R | X { 2} but e %$$G{ 1,2} R | X { 1,2} .



Maximizing the worst-case reward

Objective: Distributional Robustness

argmax! ! ! V E(! ), where V E(! ) := inf
e!E

E!, e %
R

&
.

Under certain assumptions solving the distributionally robust objective amounts to

finding an optimal invariant policy.

Theorem

Consider an invariant policy ! " ! argmax! ! ! inv

'
e!E obs E!, e[R]. Under “strong

environments” assumption, it holds that

&! ! ⇧ : V E(! ) ' V E(! " ).



“Strong environments” Assumption

!

!
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Strong environments: There exists

e ! E such that X 1 $$ U in e.

!

! !

X 1

X 2

X 3 U

e A R

Strong environments: There exists

e ! E such that X 1 $$ U in e.
(Note that X 3 can still be con-

founded in e).
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Testing invariance

! { 1,2}

! { 1,2}
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U We have,

e %$$! { 1,2} R | X { 1,2}

and e %$$! { 1,2} R | X { 2}

(but e $$ ! { 2} R | X { 2} ).

Given S ( { 1, . . . , d} , we resample the data to mimick1 the policy ! S .

To test invariance: 1) bundle all environments, 2) fit regression, 3) test whether

prediction residuals are equally distributed across environments2.

1
Nikolaj Thams et al. (2021). “Statistical Testing under Distributional Shifts”. In: arXiv preprint

arXiv:2105.10821
2
Christina Heinze-Deml et al. (2018). “Invariant Causal Prediction for Nonlinear Models”. In: Journal of

Causal Inference6.2



Limitations of Subset Search

(i) Computational e�ciency

– Variable screening

– Greedy search

(ii) No invariant sets when U acts on the parents
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Limitations of Subset Search

S(! , e) :

!
"""""""""""#

"""""""""""$

U := "U

X 1 := #eU + "X 1

X 2 := $eU + "X 2

A := g! (X 1, X 2, "A)

R :=

!
#

$
%1X 2 + U + "R, if A = 0

%2X 2 " U + "R, if A = 1
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!

!

There is no invariant set!!
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Instrumental Variable (IV) Setting

We consider the following structural causal modelM 0

Z := ! Z

U := ! U

X := g0(Z , U, ! X )

Y := f 0(X ) + h0(U, ! Y ) YX

Z

f 0

g0 U

whereZ ! Rr are instruments, U ! Rq are unobserved variables,X ! Rd are
predictors, Y ! R is a response, and (! Z , ! U , ! X , ! Y ) are jointly independent noise
variables. Thecausal functionf 0 satisÞesindependence restrictionY " f 0(X ) ## Z.



IdentiÞcation of f 0: Moment restriction vs Independence restriction

E.g., consider a linear causal functionf 0(x) = x! " 0 for some" 0 ! Rd.
Classical IV approach

IdentiÞcation off 0 is based on
the (conditional) moment restriction:

E[Y " X ! " | Z ] = 0 . (1)

f 0 is not identiÞable whenE[X | Z ] = 0.

Independence-based IV

IdentiÞcation off 0 is based on
the independence restriction:

Y " X ! " ## Z. (2)

We can identifyf 0 even ifE[X | Z ] = 0.

The independence restriction (2) yields

(i) Strictly stronger identiÞability results.

(ii) (in some settings) More e!cient estimators (e.g., under weak instruments).
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Example: Non-additive Instruments

Consider the following SCM

Z := ! Z

U := ! U

X := ZU + ! X

Y := X + U + ! Y ,

(3)

with F = { f | f (x) = " x} , where (! Z , ! U , ! X , ! Y ) are jointly independent standard
Gaussian variables.

Here, we haveE[X |Z ] = Z E[U] + E[! X ] = 0 and therefore one cannot identify the
causal function based only on themoment restriction. Nonetheless, the causal function
can be identiÞed with theindependence restriction.
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Independence-based IV with HSIC

Given (X , Y , Z ), our method aims to Þnd a functionöf that minimizes the dependency
between the residualsY " öf (X ) and the instrumentsZ .

We propose the HSIC-X (ÔXÕ for ÔexogenousÕ) estimator:

öf := arg min
f "F

!HSIC(Y " f (X ), Z ), (4)

Two heuristics to alleviate the non-convexity issue:

(i) Initialize the parameters in the Þrst trial at the OLS/2SLS solutions.

(ii) Restarting heuristic: Test for the independence restriction at the solution. If the
test is rejected, randomly re-initialize the parameters and restart the optimization.
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Under-identiÞed IV and Distribution Generalization

In the under-identiÞed case whenZ is not rich enough to identifyf 0, we can still get a
meaningful estimator where we Þnd the most predictive invariant function.

Theorem [Generalization to interventions on Z]

Let # : R $ R be a convex loss function andI be a set of interventions onZ. If
the interventionsI is Ôstrong enoughÕ, then

inf
f "F inv

EM 0

!
#(Y " f (X ))

"
= inf

f "F
sup
i "I

EM 0(i )
!
#(Y " f (X ))

"
, (5)

whereF inv := { f# ! F | Z ## Y " f#(X ) under PM 0} is the space of invariant
functions.
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Under-identiÞed IV and Distribution Generalization

Motivated by (5), we propose the HSIC-X-pen (ÔpenÕ for ÔpenalizationÕ) estimator:

öf ! = arg min
f "F

!HSIC(Y " f (X ), Z )) + $
# n

i=1 #(Yi " f (Xi )) , (6)

where the tuning parameter$ ! [0, %) is selected as the largest possible value for
which an HSIC-based independence test between the residuals and the instruments is
not rejected.



Contributions

Three contributions:

(i) We discuss the use of theindependence restrictionY " f (X ) ## Z in IV
estimation and its implication on the identiÞability off 0.

(ii) We proposeHSIC-X, a gradient-based learning method that exploits the
independence restriction to estimatef 0 and prove its consistency.

(iii) We propose to use the independence restriction fordistribution generalizationand
prove theoretical guarantees.



Future Work

(i) How to estimate the prediction intervals?

(ii) How to handle non-additive confounding e"ect?


