Invariant Policy Learning: A Causal Perspective

UNIVERSITY OF

Sorawit Saengkyongam
COPENHAGEN @

Copenhagen Causality Lab (CoCala), University of Copenhagen Las
Causality
) ; ) R ) . Openhagen
Joint work with Nikolaj Thams, Jonas Peters and Niklas Pfister. e




Contextual bandits: Covariates, Action, Reward

Goal: We consider the problem of learning policies that are robust with respect to

shifts in the environments. ))
Setting: (Offline) Contextual Bandits °)) e

X: context (observed); A: action; !
R: reward; U: context (unobserved) e

Figure 1: Graphical model of the setting
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Figure 1: Graphical model of the setting

We assume additionally that data is collected from different environments, e ! E ,
changing the covariate distributions. Future changes in distribution is represented as
new environments.

¥ E.g. records from different hospitals, countries or experimental setups.



Example: Association flips between environments

U:="y
X1 i=#U +"y1
#X2 =% +"y2
S(l,e): o ©

A =g (X1, X2,")
R__#O/qx2+u+"R, ifA=0
S : $(yQX2" U+"R, |fA:1

In some environments, X! is positively correlated with R under A = 0, and in others it
is negatively correlated.
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Example: Association flips between environments

UZ:"U
X1 i=#U +"y1
#X2:=$e+"y2
S(l,e): e €

A=g (X1, X2,"s)
R__#O/qx2+U+"R, ifA=0
$ Bopx2t UtR, ifA=1

In some environments, X! is positively correlated with R under A = 0, and in others it
is negatively correlated.

=# We say that X1 is non-invariant. This poses a threat to generalization.
We do not assume that the graph is known! Instead, we seek for non-invariant features

and exclude those from policy learning.



Invariance

A set of covariates XS is invariant if it holds that
e$ GS R | XS,

A policy ! is invariant w.r.t. a set Sif | depends only on XS.

e$ g2 R|XIZ but e %1y R [ XIH2



Maximizing the worst-case reward

Objective: Distributional Robustness

5 = L s N&
argmax;; V=(!'), where VE(1) = |InEf E'®* R.
el

Under certain assumptions solving the distributionally robust objective amounts to
finding an optimal invariant policy.

Theorem

Consider an invariant policy ! * ! argmax, |, elE obs E" ®[R]. Under “strong

inv

environments” assumption, it holds that

& ! n: VE@®) VEQLT).



“Strong environments” Assumption

! Strong environments: There exists

e!E suchthat X1$ Uine.
@ =R




“Strong environments” Assumption

! Strong environments: There exists
e!E such that X1 $ U ine.

e
Strong environments: There exists
e ! E such that X! $ U in e
(Note that X3 can still be con-
e founded in e).




Testing invariance

We have,
/ e%$_{1‘z)R|X{l'2}
and e %% (19 R | x {2
(bute$ 3 R X{z}).

Given S ({ 1,...,d}, we resample the data to mimick?® the policy ! S .

To test invariance: 1) bundle all environments, 2) fit regression, 3) test whether
prediction residuals are equally distributed across environments?.

INikolaj Thams et al. (2021). “Statistical Testing under Distributional Shifts”. In: arXiv preprint
arXiv:2105.10821

2Christina Heinze-Deml et al. (2018). “Invariant Causal Prediction for Nonlinear Models”. In: Journal of
Causal Inference6.2



Limitations of Subset Search

(i) Computational efficiency

— Variable screening
— Greedy search



Limitations of Subset Search

(i) Computational efficiency

— Variable screening
— Greedy search

(i) No invariant sets when U acts on the parents



Limitations of Subset Search

UZ:"U
Xl:: #eU‘I‘"Xl
#Xx2.—3.U+"2
S(! ,e) o €

A=g (XL, X2,"8)
N TWXP U R, IA=O
B Sopx2n Utg, ifA=1

There is no invariant set!!



HSIC-X: Exploiting Independent Instruments
Identibcation and Distribution Generalization

UNIVERSITY OF

Sorawit Saengkyongam COPENHAGEN @
’7

Las
Causality
O;)cnhaggp;/~\ S

Copenhagen Causality Lab (CoCala), University of Copenhagen G

Joint work with Leonard Henckel, Niklas Ppster and Jonas Peters.



Instrumental Variable (V) Setting

We consider the following structural causal modéP

Z =1y 7

Uu:=1 N

X = g°%Z,U,1x) .« ¥ "X
Y = f9(X)+ ho(U, 1y) X fO— Y

whereZ ! R" areinstruments U! RY are unobserved variableX,! RY are
predictors Y ! R is aresponseand (z,!y,!x,!y) are jointly independent noise
variables. Thecausal functionf © satisPesndependence restrictiol " fO(X) # Z.



Identibcation of f° Moment restriction vs Independence restriction

E.g., consider a linear causal functid§(x) = x' " for some"?! R9Y.

Classical IV approach

Identibcation off % is based on

the (conditional) moment restriction
E[Y " X'"|Z]=0. (1)

9 is not identipable whelE[X | Z] = 0.

Independence-based IV ——

Identibcation off % is based on

the independence restriction
Y" X'"# Z. 2)

We can identifyf © even ifE[X | Z] = 0.



Identibcation of f° Moment restriction vs Independence restriction

E.g., consider a linear causal functid§(x) = x' " for some"?! R9Y.

Classical IV approach Independence-based IV ——
Identibcation off © is based on Identibcation off © is based on
the (conditional) moment restriction the independence restriction
E[Y " X'"|Z]=0. 1) Y " x'"# z. 2)
0 is not identipable whefE[X | Z] =0. | We can identifyf ® even ifE[X | Z] = 0.

The independence restriction (2) yields

(i) Strictly stronger identipability results.
(i) (in some settings) More elcient estimators (e.g., under weak instruments)




Example: Non-additive Instruments

Consider the following SCM

=17

|
U

3
ZU + Iy ®)

Y = X+U+ly,

X C N
i

with F = {f |f(x) = "x}, where (z,!y,!x,!y) are jointly independent standard
Gaussian variables.



Example: Non-additive Instruments

Consider the following SCM

Z = !Z
U:=!U
_ 3)
X = ZU + Iy
Y =X+U+ly,

with F = {f |f(x) = "x}, where (z,!y,!x,!y) are jointly independent standard
Gaussian variables.
Here, we haveE[X|Z] = Z E[U] + E[!x] = 0 and therefore one cannot identify the

causal function based only on thmoment restriction Nonetheless, the causal function
can be identiped with théndependence restriction



Independence-based IV with HSIC

Given K, Y ,Z), our method aims to bnd a functioR that minimizes the dependency
between the residual¥ " £(X) and the instrumentsZ .

We propose the HSIC-X (OXO for OexogenousO) estimator:

P = argmin HSIC(Y " f(X),Z), (4)
FF




Independence-based IV with HSIC

Given K, Y ,Z), our method aims to bnd a functioR that minimizes the dependency
between the residual¥ " £(X) and the instrumentsZ .

We propose the HSIC-X (OXO for OexogenousO) estimator:

P = argmin HSIC(Y " f(X),Z), (4)
FF

Two heuristics to alleviate the non-convexity issue:

() Initialize the parameters in the Prst trial at the OLS/2SLS solutions.

(i) Restarting heuristic: Test for the independence restriction at the solution. If the
test is rejected, randomly re-initialize the parameters and restart the optimization.



Under-identibed IV and Distribution Generalization

In the under-identibPed case whéhis not rich enough to identifyf °, we can still get a
meaningful estimator where we Pnd the most predictive invariant function.



Under-identibed IV and Distribution Generalization

In the under-identibPed case whéhis not rich enough to identifyf °, we can still get a
meaningful estimator where we Pnd the most predictive invariant function.

Theorem [Generalization to interventions on Z]

Let#: R$ R be a convex loss function andbe a set of interventions o# . If
the interventionsl is Ostrong enough®, then

! !
fi,,r;fmvEMo #Y " 1(X)) = inf ﬁllJpEMo(i) #Y " £(X)) . (5)

whereFin, = {fz'F| Z# Y " fx(X) underPyo} is the space of invariant
functions.



Under-identibed IV and Distribution Generalization

Motivated by (5), we propose the HSIC-X-pen (OpenO for OpenalizationO) estimator:

f' =argmin HSIC(Y " f(X),Z))+ $# LOHY " T (X)), (6)
f"F

where the tuning paramete$ ! [0, %) is selected as the largest possible value for
which an HSIC-based independence test between the residuals and the instruments is
not rejected.



Contributions

Three contributions:

(i) We discuss the use of thedependence restriction’ " f(X)# Z in IV
estimation and its implication on the identibability ¢f.

(i) We proposeHSIC-X a gradient-based learning method that exploits the
independence restriction to estimafé€ and prove its consistency.

(iii) We propose to use the independence restrictiondtribution generalizatiorand
prove theoretical guarantees.



Future Work

() How to estimate the prediction intervals?

(i) How to handle non-additive confounding e"ect?



