Machine learning for inverse problems, learning from noisy data, and DNA storage

Reinhard Heckel

reinhard.heckel@tum.de
Research

Machine learning, statistics, and signal processing.

Current focus:

i. Deep learning for inverse problems

ii. Learning from unlabeled data or noisy labels

iii. DNA data storage
i. Deep learning for inverse problems
Example of inverse problems
Inverse problems

Traditionally solved with handcrafted models like wavelets/sparsity

![Graphs showing different wavelet shapes](image_url)
Inverse problems

Traditionally solved with handcrafted models like wavelets/sparsity

Now state-of-the-art based on image-generating deep neural networks
The deep decoder

handcrafted + deep neural networks
The deep decoder: handcrafted neural network

An image generating network that is

- not trained
- yields state-of-the-art compression and image restoration performance, for example for MRI imaging
- is underparameterized
Deep decoder for MRI

LS
25.82dB

L1-Wav
29.04dB

DD
30.08dB
ii. Learning from unlabeled data or noisy labels
Learning from examples

1. Collect candidate examples for example via google image search
2. Labeling the candidate images
3. Training a deep network
An AI company - what do these people do?
An AI company - what do these people do?

Yan Cong for The NYT. “Workers at the headquarters of Ruijin Technology Company. They identify objects in images to help artificial intelligence make sense of the world.”
Labeling is the most expensive step
Labeling is the most expensive step
Labeling is the most expensive step

- How to use the human workers most efficiently with active learning?
Labeling is the most expensive step

- How to use the human workers most efficiently with active learning?
- Don’t label - learn from noisy candidates
Training a deep network on noisy candidates

Deep nets fit correct examples faster than wrong ones

Early stopping enables training on noisy examples!
ii. DNA data storage
DNA data storage

01011010 \(\rightarrow \) encode

\cdots AGACGTCT \cdots
DNA data storage

01011010 encode

⋯AGACGTCT⋯

Leads to interesting coding/clustering/reconstructions problems
A commercial application: Storing information for eternity?
Our first customer: Massive attack
MEZZANINE DNA

CONTAINS
1 million copies of the Mezzanine album encoded in 901,085 DNA sequences, each 146 basepairs long and encapsulated in silicone particles for long-term storage stability

Research focus

Machine learning, statistics, and signal processing.

i. Deep learning for inverse problems

ii. Learning from few or noisy labels

iii. DNA data storage

Thank you!