Page tree

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Our implementations of this methodology, at first in the LCGTO-FF-DF program (linear combination of Gaussian-type orbitals fitting functions density functional),[1,2,3] and later on in the parallel DF software ParaGauss[4,5] had long been the only ones applied to problems beyond methodological tests on small molecules.[6]


[1] B.I. Dunlap and , N. Rösch: The
The Gaussian-Type Orbitals Density-Functional Approach to Finite Systems, in: Density Functional Theory of Many-Fermion Systems, S. B. Trickey (Hrsg.), Adv. Quantum Chem.21, 317-339 (1990). 

[2] O.D. Häberlen and , N. Rösch: A
A Scalar-Relativistic Extension of the Linear Combination of Gaussian-Type Orbitals Local Density Functional Method: Application to AuH, AuCl, and Au2 Chem. Phys. Lett.199, 491-496 (1992); DOI: 10.1016/0009-2614(92)87033.

[3] V.A. Nasluzov and , N. Rösch:
Density Functional Based Structure Optimization for Molecules Containing Heavy Elements: Analytical Energy Gradients of the Douglas-Kroll-Hess Scalar Relativistic Approach to the LCGTO-DF Method Chem. Phys.210, 413-425 (1996); DOI DOI: 10.1016/0301-0104(96)00137-1.

[4] N. Rösch, S. Krüger, M. Mayer, and V.A. Nasluzov: The
The Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory: Methodological Aspects and Applications to Metal Complexes and Clusters, in: Recent Developments and Applications of Modern Density Functional Theory, J.M.Seminario (ed.), Elsevier, Amsterdam, 497 (1996);. Link.

[5] T. Belling, T. Gauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V.A.Nasluzov, U. Birkenheuer, and N. Rösch, :
ParaGauss, Version 2.0, Technische Universität München, (1998). 

[6] Th. Belling, Th. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V. A. Nasluzov, U. Birkenheuer, N. Rösch: ParaGauss
ParaGauss: A Density Functional Approach to Quantum Chemistry on Parallel Computers, in: Scientific Computing in Chemical Engineering II, Vol. 1, F. Keil, M. Mackens, H. Voß und J. Werther (Hrsg.), Springer, Heidelberg, 1999, S. 66-73.

[7] T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V.A.Nasluzov, U. Birkenheuer, A. Hu, A. Matveev, A.V. Shor, M.S.K. Fuchs-Rohr, K.M.Neyman, D.I. Ganyushin, T. Kerdcharoen, A. Woiterski, and N. Rösch, :
ParaGauss,Version 2.2, Technische Universität München, 2001. 

[8] M. Mayer, S. Krüger, N. Rösch: A
A Two-Component Variant of the Douglas-Kroll Relativistic Linear Combination of Gaussion-Type Orbitals Density Functional Method: Spin-Orbit Effects in Atoms and Diatomics, J. Chem. Phys.  115, 4411-4423 (2001); DOI DOI: 10.1063/1.1390509.

[9] A. V. Matveev, M. Mayer, N. Rösch: Efficient
Efficient Symmetry Treatment for the Nonrelativistic and Relativistic Molecular Kohn-Sham Problem. The Symmetry Module of the Program ParaGauss, Comp. Phys. Comm. 160, 91-119 (2004); DOI: 10.1016/j.cpc.2004.02.013.

[9] S. Majumder, A. V. Matveev, N. Rösch:
Spin-Orbit Interaction in the Douglas-Kroll Approach to Relativistic Density Functional Theory: The Screened Nuclear Potential Approximation for Molecules, Chem. Phys. Lett.  382, 186-193 (2003); DOI: 10.1016/j.cplett.2003.10.072.

[10] A. V. Matveev, V. A. Nasluzov, N. Rösch:
Linear Response Formalism for the Douglas-Kross-Hess Approach to the Dirac-Kohn-Sham Problem: First- and Second-Order Energy Derivatives, Int. J. Quantum Chem. 107, 3236-3249 (2007); DOI: 10.1002/qua.21501.