Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

A Program Package for High-Performance Computations of Molecular Systems

ParaGauss is a parallel DFT code for solving challenging electronic structure problems in chemistry, surface science, and the field of nanostructured materials. It is written in the FORTRAN 95 language and parallelized via MPI.

...

  • Calculation of DFT energy and forces 
  • Local, GGA, meta-GGA, and hybrid exchange-correlation functionals
  • Geometry optimization and local search of transition state
  • Pseudopotentials as an atomic core substitute
  • Relativistic methods for heavy elements including treatment of spin-orbit interaction
  • Solvation models
  • Environmental models

Contributors

...

ParaGauss was developed at Technische Universität München by Thomas Belling, Thomas Grauschopf, Sven Krüger, Folke Nörtemann, Markus Staufer, Markus Mayer, Vladimir A. Nasluzov, Uwe Birkenheuer, Aguang Hu, Alexei Matveev, Aleksey V. Shor, Monika Fuchs-Rohr, Konstantin M. Neyman, Dimitry I. Ganyushin, Teerakiat Kerdcharoen, André Woiterski, Sonjoy Majumder, Miquel H. i Rotllant, Raghunathan Ramakrishnan, Gopal Dixit, Astrid Nikodem, Thomas M. Soini, Martin Roderus, and Notker Rösch.

Parallel Performance

...

Speed-up and efficiency for the example of SCF cycles of the cluster Pt140(CO)8 as calculated with the TPSSh functional together with small core pseudopotentials.

 

Further Reading

[1] N. Rösch, S. Krüger, C. Zenger, M Griebel:
Quantenchemie auf Parallelrechnern. Quantenchemie auf Parallelrechnern. Zur Perspektive der Dichtefunktionaltheorie, in: HPSC95-Stand und Perspektiven des Parallelen Höchstleistungsrechnens und seiner Anwendungen, Proceedings zur Statustagung des BMBF, 11.-14. September 1995 in Jülich, H. Wolf,  R. Krahl (eds.), 1996, pp. 89-104.

[2] V. A. Nasluzov, N. Rösch:
Density Functional Based Structure Optimization for Molecules Containing Heavy Elements: Analytical Energy Gradients of the Douglas-Kroll-Hess Approach to the LCGTO-DF Method, Chem. Phys. 210, 413-425 (1996). DOI: 10.1016/0301-0104(96)00137-1

[3] N. Rösch, S. Krüger, M. Mayer, V. A. Nasluzov:
The Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory: Methodological Aspects and Applications to Metal Complexes and Clusters, in: Recent Developments and Applications of Modern Density Functional Theory, J. M. Seminario (ed.), Theoretical and Computational Chemistry Series, vol. 4, Elsevier, Amsterdam, 1996, pp. 497-566.

[4] Th. Belling, Th. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V. A. Nasluzov, U. Birkenheuer, N. Rösch:
ParaGauss: A Density Functional Approach to Quantum Chemistry on Parallel Computers, in:  Scientific Computing in Chemical Engineering II  , Vol. 1, F. Keil, M. Mackens, H. Voß und J. Werther (Hrsg.), Springer, Heidelberg, S. 66-73 (1999).

[5] M. Mayer, S. Krüger, N. Rösch:
A Two-Component Variant of the Douglas-Kroll Relativistic Linear Combination of Gaussian-Type Orbitals Density Functional Method: Spin-Orbit Effects in Atoms and Diatomics, J. Chem. Phys115, 4411- 4423 (2001). DOI: 10.1063/1.1390509

[6] V. A. Nasluzov, V. V. Rivanenkov, A. B. Gordienko, K. M. Neyman, U. Birkenheuer, N. Rösch:
Cluster Embedding in an Elastic Polarizable Environment: Density Functional Study of Pd Atoms Adsorbed at Oxygen Vacancies of MgO(001), J. Chem. Phys115, 8157-8171 (2001). DOI: 10.1063/1.1407001

[7] M. Fuchs, A. M. Shor, N. Rösch:
The Hydration of the Uranyl Dication. Incorporation of Solvent Effects in Parallel Density Functional Calculations with the Program PARAGAUSS, Int. J. Quantum Chem.  86, 487-501 (2002). DOI: 10.1002/qua.1115

[8] S. Majumder, A. V. Matveev, N. Rösch:
Spin-Orbit Interaction in the Douglas-Kroll Approach to Relativistic Density Functional Theory: The Screened Nuclear Potential Approximation for Molecules, Chem. Phys. Lett.  382, 186-193 (2003). DOI: 10.1016/j.cplett.2003.10.072

[9] T. Kerdcharoen, U. Birkenheuer, S. Krüger, A. Woiterski, N. Rösch:
Implementation of a Quantum Mechanics/Molecular Mechanics Approach in the Parallel Density Functional Program PARAGAUSS and Applications to Model Copper Thiolate Clusters, Theor. Chem. Acc. 109, 285-297 (2003). DOI: 10.1007/s00214-003-0432-8

[10] A. V. Matveev, M. Mayer, N. Rösch:
Efficient Symmetry Treatment for the Nonrelativistic and Relativistic Molecular Kohn-Sham Problem. The Symmetry Module of the Program ParaGauss, Comp. Phys. Comm. 160, 91-119 (2004). DOI: 10.1016/j.cpc.2004.02.013

[11] N. Rösch, A. V. Matveev, V. A. Nasluzov, K. M. Neyman, L. V, Moskaleva, S. Krüger:
Quantum Chemistry with the Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory: Efficient Methods for Molecules and Materials, in: Relativistic Electronic Structure Theory - Applications, P. Schwerdtfeger (Hrsg.),Theoretical and Computational Chemistry Series, Vol. 14, Elsevier, Amsterdam, 2004, S. 656-722. 

[12] A. V. Matveev, V. A. Nasluzov, N. Rösch:
Linear Response Formalism for the Douglas-Kross-Hess Approach to the Dirac-Kohn-Sham Problem: First- and Second-Order Energy Derivatives, Int. J. Quantum Chem. 107, 3236-3249 (2007). DOI: 10.1002/qua.21501

[13] A. M. Shor, E. A. Ivanova Shor, V. A. Nasluzov, G. N. Vayssilov, N. Rösch:
First Hybrid Embedding Scheme for Polar Covalent Materials Using an Extended Border Region To Minimize Boundary Effects on the Quantum Region, J. Chem. Theor. Comput3, 2290-2300 (2008). DOI: 10.1021/ct700159k

[14] R. Ramakrishnan, A. V. Matveev, N. Rösch:
The DFT+U Method in the Linear Combination of Gaussian-Type Orbitals Framework: Role of 4f Orbitals in the Bonding of LuF3, Chem. Phys. Lett. 468, 158–161 (2009). DOI: 10.1016/j.cplett.2008.12.021

[15] R. Koitz, T. M. Soini, A. Genest, S. B. Trickey, N. Rösch:
Scalable Properties of Metal Clusters: A Comparative Study of Modern Exchange-Correlation Functionals, J. Chem. Phys137, 1-9 (2012). DOI: 10.1063/1.4733670

[16] A. Nikodem, A. V. Matveev, T. M. Soini, N. Rösch:
Load balancing by work–stealing in quantum chemistry calculations: Application to hybrid density functional methods, Int. J. Quantum Chem114, 813-822 (2014). DOI: 10.1002/qua.24677